Воспалительный отек механизм развития

Воспалительный отек механизм развития thumbnail

В результате усиленного выхода жидкой части крови из сосуда в ткань – экссудации развивается воспалительный отек. Его развитие зависит от ряда причин, в том числе от:

а) по­вышения проницаемости микрососудов;

б) увеличения кровяного (фильтрационного) давления в

посткапиллярных венулах;

в) по­вышения осмотического давления в околососудистых

тканях.

Главная причина воспалительного отека – повышение про­ницаемости микрососудов. В связи с этим в отечной жидкости при воспалении скапливается намного больше белка и других макромолекул. Проницаемость сосудов для жидкой части крови и ее клеточных элементов прежде всего зависит от свойств эндо­телия капилляров. Большинство капилляров имеет непрерывный тип строения. Это – капилляры скелетных мышц, сердца, лег­ких. Эндотелий капилляров других органов имеет фенестры (оконца), затянутые тонкой диафрагмой. Такие фенестры обна­ружены в микрососудах эндокринных желез, ворсинок тонкого кишечника, языка, и пр. Наконец, существуют капилляры в виде синусоидов в печени, селезенке. Они имеют широкие межэндоте­лиальные щели и множество фенестр, размеры которых могут быстро меняться в зависимости от давления в сосуде. При рос­те давления отверстия сливаются друг с другом, и жидкость начинает быстрее фильтроваться из сосуда в ткань.

Вещества плазмы могут проникать через стенку микрососу­дов разными путями:

– Вода, электролиты, глюкоза и другие простые соединения с малой массой проникают путем диффузии.

– Белки и другие макромолекулы проходят более сложным путем. Он получил название микровезикулярного транспорта и заключа­ется в том, что от наружной мембраны вначале отпочковывается пузырек диаметром 45-70 нм. В таких везикулах или пузырьках, или микропиноцитозных вакуолях содержатся плазменные белки. Пузырек погружается в цитоплазму эндотелиоцита и проходит от одного полюса клетки к другому, разгружаясь у базальной мембраны. Таким образом, эндотелиальные клетки могут активно захватывать в акте пиноцитоза нужные им макромолекулы из плазмы крови и передавать их в околососудистые ткани. Это явление называется цитопемсисом (от греч. pemsis – проведе­ние).

– Наконец вещества плазмы могут проникать в ткань через щели между эндотелиоцитами или фенестры. Размеры щелей зави­сят от того, в каком состоянии находятся клетки эндотелия. Если они сокращаются, то щели обнажаются и, наоборот, расс­лабление эндотелиоцитов ведет к перекрытию щелей. Это было четко продемонстрировано в опытах, где эндотелий культивиро­вали in vitro: под действием лейкотриенов С4 и Д4, -О2, брадикинина, гистамина, добавленных в инкубационную среду, эн­дотелий капилляров и посткапиллярных венул быстро округлялся и между клетками открывались щели.

Фильтрация и транспорт компонентов плазмы протекает через эндоте­лий капилляров. Благодаря этим процессам обеспечи­вается нормальный обмен веществ между кровью и тканями. В то же время в ходе воспаления жидкая часть крови начинает намного быстрее и в большем объеме покидать сосуды и устрем­ляться в зону повреждения. Воспалительный отек имеет опреде­ленное защитное значение. Белки отечной жидкости связывают токсины, задерживают их всасывание в кровь и распространение по всему организму.

Рассасывание отечной жидкости зависит от дренирующей функции лимфатической системы. При воспалении она, как пра­вило, страдает в большей или меньшей степени из-за закупорки лимфатических капилляров фибриновыми сгустками или их сдавления снаружи отечной жидкостью (экссудатом).

Источник

В результате усиленного выхода жидкой части крови из сосуда в ткань – экссудации развивается воспалительный отек. Его развитие зависит от ряда причин, в том числе от:

а) по­вышения проницаемости микрососудов;

б) увеличения кровяного (фильтрационного) давления в

посткапиллярных венулах;

в) по­вышения осмотического давления в околососудистых

тканях.

Главная причина воспалительного отека – повышение про­ницаемости микрососудов. В связи с этим в отечной жидкости при воспалении скапливается намного больше белка и других макромолекул. Проницаемость сосудов для жидкой части крови и ее клеточных элементов прежде всего зависит от свойств эндо­телия капилляров. Большинство капилляров имеет непрерывный тип строения. Это – капилляры скелетных мышц, сердца, лег­ких. Эндотелий капилляров других органов имеет фенестры (оконца), затянутые тонкой диафрагмой. Такие фенестры обна­ружены в микрососудах эндокринных желез, ворсинок тонкого кишечника, языка, и пр. Наконец, существуют капилляры в виде синусоидов в печени, селезенке. Они имеют широкие межэндоте­лиальные щели и множество фенестр, размеры которых могут быстро меняться в зависимости от давления в сосуде. При рос­те давления отверстия сливаются друг с другом, и жидкость начинает быстрее фильтроваться из сосуда в ткань.

Вещества плазмы могут проникать через стенку микрососу­дов разными путями:

– Вода, электролиты, глюкоза и другие простые соединения с малой массой проникают путем диффузии.

– Белки и другие макромолекулы проходят более сложным путем. Он получил название микровезикулярного транспорта и заключа­ется в том, что от наружной мембраны вначале отпочковывается пузырек диаметром 45-70 нм. В таких везикулах или пузырьках, или микропиноцитозных вакуолях содержатся плазменные белки. Пузырек погружается в цитоплазму эндотелиоцита и проходит от одного полюса клетки к другому, разгружаясь у базальной мембраны. Таким образом, эндотелиальные клетки могут активно захватывать в акте пиноцитоза нужные им макромолекулы из плазмы крови и передавать их в околососудистые ткани. Это явление называется цитопемсисом (от греч. pemsis – проведе­ние).

– Наконец вещества плазмы могут проникать в ткань через щели между эндотелиоцитами или фенестры. Размеры щелей зави­сят от того, в каком состоянии находятся клетки эндотелия. Если они сокращаются, то щели обнажаются и, наоборот, расс­лабление эндотелиоцитов ведет к перекрытию щелей. Это было четко продемонстрировано в опытах, где эндотелий культивиро­вали in vitro: под действием лейкотриенов С4 и Д4, -О2, брадикинина, гистамина, добавленных в инкубационную среду, эн­дотелий капилляров и посткапиллярных венул быстро округлялся и между клетками открывались щели.

Фильтрация и транспорт компонентов плазмы протекает через эндоте­лий капилляров. Благодаря этим процессам обеспечи­вается нормальный обмен веществ между кровью и тканями. В то же время в ходе воспаления жидкая часть крови начинает намного быстрее и в большем объеме покидать сосуды и устрем­ляться в зону повреждения. Воспалительный отек имеет опреде­ленное защитное значение. Белки отечной жидкости связывают токсины, задерживают их всасывание в кровь и распространение по всему организму.

Рассасывание отечной жидкости зависит от дренирующей функции лимфатической системы. При воспалении она, как пра­вило, страдает в большей или меньшей степени из-за закупорки лимфатических капилляров фибриновыми сгустками или их сдавления снаружи отечной жидкостью (экссудатом).

Bиды экссудатов

В зависимости от качественного состава различают следующие виды экссудатов: серозный, фибиринозный, гнойный, гнилостный, геморрагически

Серозный экссудат характризуется умеренным содержанием белка (3-5%), в основном мелкодисперсного (альбумин) и небольшим количеством ПМЛ и является достаточно прозрачным. Удельный вес его составляет 1015-1020. По составу и физико-химическим свойствам серозный экссудат мало отличается от транссудата – жидкости, которая скапливается в тканях при застойных оттеках. Примером серозного экссудата является содержимое пузыря на коже при ожоге II степени, а также при вирусном и аллергическом воспалении.

Если к серозному экссудату примешивается фибрин, то возникает фиброзный экссудат. В качестве примера можно при­вести фибринозные налеты в зеве или гортани при дифтерии. Кроме этого фибринозный экссудат может наблюдаться при туберкулезе и дизентерии. При разрешении воспаления фибриновые пленки растворяются плазмином -фибринолизином. В этом процессе важную роль иг­рают активаторы плазминогена – лизосомальные ферменты лейко­цитов экссудата.

Читайте также:  Шиповник заварить от отеков

Когда к серозному экссудату начинают примешиваться эритроциты и продукты их распада возникает геморрагический экссудат,имеющий розовый или красный цвет. Геморрагический характер может принять любой вид воспаления. Характерен для туберкулезных поражений, чумы, сибирской язвы, черной оспы, токсического гриппа и аллергического воспаления т.е. в тех случаях когда имеет место повышенной проницаемости и даже разрушение сосудов.

В случае когда в очаге воспаления много фагоцитов, но они неполноценны в функциональном отно­шении. Особенно тяжелые последствия возникают, если по гене­тическим причинам нейтрофилы плохо вырабатывают микробицидные факторы – H2O2, O2- и другие биоокислители. В этом слу­чае любое воспаление может приводить к развитию абсцессов и принимать затяжное течение. Гнойное воспаление будет затяги­ваться и в той ситуации, когда пришедшие в очаг моноциты слабо растормаживают восстановительные процессы.

Часть ПМЛ в очаге воспаления гибнет в ходе фагоцитоза. Причиной гибели клеток служит чрезмерная активация лизосо­мальных ферментов и нарушение проницаемости мембран лизосом. В результате ферменты из гранул попадают в цитоплазму и клетка подвергается самоперевариванию (аутолизу). Этот про­цесс нередко образно называют “самоубийством” клетки. Проницаемость мембран лизосом в фагоцитируюших нейтрофилах воз­растает под действием биоокислителей – O2-, H2O2, ОН’, уби­вающих микробы. Следовательно нейтрофил должен жертвовать собой ради организма в целях восстановления гомеостаза. Особенно высокий процент нейтрофилов гибнет при остром гнойном воспалении, которое вызывается гноеродными кокками (стрепто-, стафило-, пневмококками, гонококками и пр.). В резуль­тате активной гибели лейкоцитов и других типов клеток в этих случаях формируется гнойный экссудат или гной. Если нет дре­нирования, то гнойный экссудат может распространяться на все новые и новые территории. В качестве примера можно привести ситуацию, когда очаги воспаления волосяного мешочка кожи (фурункул) сливаются друг с другом и дают начало более круп­ному очагу гнойного воспаления – карбункулу. Если его своев­ременно не дренировать, то разовьется разлитое гнойное вос­паление подкожной клетчатки – флегмона.

Гнилостный (ихорозный) экссудат отличается наличием продуктов гнилостного разложения тканей. Имеет грязно-зеленый цвет и дурной запах. Образуется при присоединении патогенных анаэробов.

Смешанные экссудаты наблюдаются при воспалении, протекающем на фоне ослабленных защитных сил организма и присоединения вследствие этого вторичной инфекции. Различают серозно-фибринозный, серозно-гнойный, серозно-геморрагический, гнойно-фибринозный.

Биологическое значение экссудата:

– экссудат уменьшает концентрацию токсинов и тем самым ослабляет их действие на ткань.

– в экссудате содержатся ферменты, которые разрушают токсические вещества и лизируют некротизированные ткани.

– экссудатом в ткань выделяются иммуноглобулины, которые оказывают антитоксическое действие (и антимикробное), а также оказывают и общее защитное действие в связи с наличием неспецифических факторов защиты: лизоцим, комплемент, интерферон, бета-лизины и др.

– с экссудатом в ткань выделяется большое количество фибриногена, который переходит в фибрин и таким образом оказывает защитное действие, препятствуя распространению болезнетворного фактора, главным образом по межклеточным пространствам.



Источник

Отеки. Причины отеков. Воспалительный отек.

Воспалительный отек характеризуется тремя основными симптомами: краснотой, жаром, болью (rubor, calor, dolor); клинически его почти всегда нетрудно отличить от невоспалительного отека.

На образование невоспалительного отека или скопление жидкости в подкожной клетчатке влияют следующие факторы.

1. Гидростатическое давление, которое обычно в капиллярах выше, чем в межклеточных пространствах, и поэтому имеет тенденцию выжимать жидкость из сосудов в ткань.

2. Онкотическое давление, величина которого определяется концентрацией белковых молекул, которая в кровеносных сосудах значительно выше, чем в тканях Стенки капилляров, являясь полупроницаемыми мембранами, не пропускают белковых молекул.

Онкотическое давление в сосудах имеет, таким образом, тенденцию притягивать жидкость из тканей и является поэтому самой значительной силой, которая противодействует гидростатическому давлению.

3. Концентрация электролитов, и прежде всего натрия, в высокой степени определяет общее количество жидкости как в сосудах, так ив межклеточной ткани; обмен электролитов между плазмой крови и тканями происходит через полупроницаемые стенки капилляров беспрепятственно. Поэтому повышенная концентрация электролитов ведет к увеличению общего количества жидкости в организме, что обнаруживается в возрастании как циркулирующего объема плазмы, так и массы межклеточной тканевой жидкости. Выделение натрия при этом обусловлено как величиной почечного кровотока, так и в первую очередь альдостероном—минералокортикоидом коры надпочечников.

4. Состояние капиллярной стенки.

5. Состояние лимфатических сосудов, через которые частично совершается отток межтканевой жидкости.

6. Так называемый тканевой фактор.

отеки и причины отеков

Отеки часто имеют сложный генез,т. е. обусловлены несколькими факторами. «Старые механические» (гидростатическое давление и т. д.) факторы в значительной степени определяют локализацию отека, в то время как «современные гуморальные» факторы (натрий, альдостерон) поддерживают его. Несмотря на это, в дифференциально-диагностических целях можно подразделять отеки на патогенетической основе.

Патогенетически можно различать следующие отеки.

1. Отеки вследствие повышенного гидростатического давления:

а) при местно обусловленном застое, варикозном расширении вен, тромбофлебите;

б) при гемодинамической сердечной недостаточности;

в) при хроническом наследственном отеке.

2. Отеки вследствие сниженного онкотического давления:

а) при нефрозах;

б) при заболеваниях печени;

в) голодные отеки (алиментарно-дистрофические);

г) кахектические отеки.

3. Отеки вследствие нарушения обмена электролитов:

а) при диффузном геморрагическом нефрите;

б) сердечные отеки при нарушенном выделении хлористого натрия;

в) при передозировках препаратов дезоксикортикостерона.

4. Отеки вследствие повреждения капиллярных стенок:

а) нефритические отеки;

б) аллергические отеки (Квинке);

в) отеки при неврологических заболеваниях.

5. Отеки вследствие нарушенного оттока лимфы:

а) слоновость при филяриозе;

б) при неспецифических лимфангоитах;

в) при аномалиях в расположении лимфатических сосудов.

6. Отеки вследствие тканевого фактора:

а) сердечные отеки;

б) «липедема».

7. Отеки, механизмы возникновения которых еще не выяснены:

а) отеки при микседеме;

б) отеки вследствие гормональных влияний;

в) отеки при высокой температуре;

г) «эссенциальныеч> отеки.

Вместе с тем, исходя из клинической картины, образование отеков можно наблюдать при следующих состояниях:

1) гемодинамическая недостаточность миокарда;

2) цирроз печени;

3) гломерулонефроз;

4) геморрагический нефрит;

5) местное нарушение венозного оттока (тромбофлебит);

6) нарушение оттока лимфы;

7) гормональные нарушения (микседема, гиперсекреция минералокортикоидов);

8) аллергические состояния;

9) длительное голодание и кахектические состояния;

10) различные воспалительные процессы.

Видео техники определения отеков

– Также рекомендуем “Отеки вследствие повышенного гидростатического давления. Отеки вследствие пониженного онкотического давления.”

Оглавление темы “Болезни почек. Отеки и их причины.”:

1. Оценка почечной функции. Проба с фенолсульфофталеином.

2. Клиника уремии. Признаки уремии. Псевдоуремия.

3. Гепато-ренальный синдром. Экстраренальный почечный синдром.

4. Злокачественные опухоли почек. Саркома почек.

5. Нефролитиаз. Почечная колика.

6. Гидронефроз. Пиелонефрит. Признаки гидронефроза и пиелонефрита.

7. Пионефроз. Протеинурия. Признаки и классификация протеинурии.

8. Отеки. Причины отеков. Воспалительный отек.

9. Отеки вследствие повышенного гидростатического давления. Отеки вследствие пониженного онкотического давления.

10. Отеки вследствие нарушения обмена электролитов. Отеки вследствие нарушения капиллярной стенки.

Читайте также:  Что такое отек семенного бугорка

Источник

№ 43 Механизмы экссудации и формирования воспалительного отека. Биологическая роль воспалительного отека. Виды экссудатов.
Воспалительный отек
Вокруг очага воспаления нередко развивается отек; между эндотелиальными клетками образуются просветы, куда входят вода и белки.
Примером воспалительного отека является отек мягких тканей лица при воспалении тканей зубной лунки и пульпы зуба (флюс).

В механизме воспалительного отека важную роль играет увеличение проницаемости кровеносных капилляров под влиянием гистамина, брадикинина и других биологически активных веществ. Вопрос о механизмах проницаемости мелких и мельчайших кровеносных сосудов (капилляров и венул) для плазмы крови и ее форменных элементов при воспалении получил сейчас новые решения в свете электронно-микроскопических исследований (Чернух А. М., 1976).

Выяснилось, что строение капилляров как в норме, так и при воспалении неоднородно. Различают по крайней мере три типа структуры капилляров и мелких вен:
Сплошной тип—эндотелий выстилает сосуд без перерывов, клетки плотно без щелей прилегают друг к другу, под эндотелием находится сплошная базальная мембрана. С наружной стороны мембраны располагаются перициты.
«Висцеральный тип» — между эндотелиальными клетками имеются «поры», проникающие и через базальную мембрану, или «фенестры» — поры, затянутые базальной мембраной, которая остается целой.
Синусоидный тип — капилляры имеют широкие щели между собой, базальная мембрана во многих местах отсутствует

В разных органах преобладают капилляры разных типов. Например, в скелетных мышцах, в коже — первый тип, во внутренних органах — второй тип, в селезенке, в лимфоузлах — третий тип. В зависимости от функционального состояния органа и в особенности при патологии один тип может переходить в другой, например сплошной в пористый (кожа и другие ткани). Таким образом, структура эндотелиальной стенки не стабильна, подвижна. Образование в ней пор и щелей представляет собой обратимый процесс. В ходе развития воспаления гистамин и другие медиаторы вызывают сокращение актомиозиновых нитей эндотелиальных клеток, сокращение этих клеток раздвигает межэндотелиальные щели, вызывает образование фенестров и пор. Другие медиаторы (кинины, брадикинин) вызывают образование в эндотелиальных клетках пузырьков (везикул) различной величины, а также отека под эндотелием, способствующего образованию щелей и пор. Все эти процессы участвуют также в активации процессов экссудации при воспалении. Важно подчеркнуть, что процесс образования везикул, вероятно, энергозависимый процесс, в механизме которого важную роль играют системы аденилциклазы, гуанилциклазы, холинэстеразы и других ферментов клеточных мембран.

По имеющимся данным, это влияние на проницаемость реализуется при участии макроэргических соединений (АТФ). Так, выключение с помощью цианидов тканевого дыхания, в ходе которого синтезируется АТФ, ослабляет действие медиаторов проницаемости.

Большую роль в механизме воспалительного отека играет затруднение оттока крови и лимфы из очага воспаленной ткани. Задержка оттока крови и лимфы вызывает выход плазмы крови и лимфы в ткань и развитие отека.

Воспалительный отек имеет некоторое защитное значение. Белки отечной жидкости связывают токсические вещества воспаленной ткани, нейтрализуют токсические продукты распада тканей при воспалении. Это задерживает поступление указанных выше веществ из очага воспаления в общую циркуляцию и предупреждает распространение их по организму.

Выход жидкой части крови в интерстиций очага В. – собственно экссудация происходит вследствие резкого повышения проницаемости гистогематического барьера и как следствие усиления процесса фильтрации и микровезикулярного транспорта. Выход жидкости и растворенных в ней веществ осуществляется в местах соприкосновения эндотелиальных клеток. Щели между ними могут увеличиваться при расширении сосудов, при сокращении контрактильных структур и округлении эндотелиальных клеток. Кроме того, клетки эндотелия способны “заглатывать” мельчайшие капельки жидкости (микропиноцитоз), переправлять их на противоположную сторону и выбрасывать в близлежащую среду (экструзия).

Транспорт жидкости в ткани зависит от физико-химических изменений, происходящих по обе стороны сосудистой стенки. В связи с выходом белка из сосудистого русла, его количество вне сосудов увеличивается, что способствует повышению онкотического давления в тканях. При этом в очаге В. происходит под влиянием лизосомальных гидролаз расширение белковых и других крупных молекул на более мелкие. Гиперонкия и гиперосмия в очаге альтерации создают приток жидкости в воспаленную ткань. Этому способствует и повышение внутрисосудистого гидростатического давления в связи с изменениями кровообращения в очаге В.

Результатом экссудации является заполнение интерстициальных пространств и очага В. экссудатом. Экссудат отличается от трансудата тем, что содержит большее количество белков (не менее 30 г/л), протеолитических ферментов, иммуноглобулинов. Если проницаемость стенки сосудов нарушена незначительно, то в экссудат, как правило, проникают альбумины и глобулины. При сильном нарушении проницаемости из плазмы в ткань поступает белок с большей молекулярной массой (фибриноген). При первичной, а затем и вторичной альтерации проницаемость сосудистой стенки увеличивается на столько, что через нее начинают проникать не только белки, но и клетки. При венозной гиперемии этому способствует расположение лейкоцитов вдоль внутренней оболочки мелких сосудов и более или менее прочное их прикрепление к эндотелию (феномен краевого стояния лейкоцитов).

Раннюю транзиторную реакцию роста проницаемости сосудов обуславливает действие гистамина, ПГЕ, лейкотриена Е4, серотонина, брадикинина. Ранняя транзиторная реакция в основном затрагивает венулы с диаметром не более, чем 100 мкм. Проницаемость капилляров при этом не меняется. Действие экзогенных этиологических факторов механической (травма, ранение), термической или химической природы, вызывая первичную альтерацию, приводит к длительной реакции роста проницаемости. В результате действия этиологического фактора происходит некроз эндотелиалльных клеток на уровне артериол небольшого диаметра, капилляров и венул, что ведет к стойкому возрастанию их проницаемости. Отсроченная и стойкая реакция роста проницаемости микрососудов развивается в очаге В. через часы или сутки от его начала. Она характерна для В., вызванного ожогами, излучением и аллергическими реакциями отсроченного (замедленного) типа. Одним из ведущих медиаторов этой реакции является медленно реагирующая субстанция анафилаксии (МРСА), которая есть не что иное как лейкотриены и полиненасыщенные жидкие кислоты, которые образуются их арахидоновой кислоты и фактора активации тромбоцитов (ФАТ). МРСА в очаге В. образуют и высвобождают лаброциты. Стойкий рост проницаемости микрососудов в очаге В. МРСА обуславливает, вызывая протеолиз базальных мембран микрососудов.

Биологический смысл экссудации как компонента В. состоит в отграничении очага В. через сдавление кровеностных и лимфатических микрососудов вследствие интерстиналльного отека, а также в разведении флогогенов и факторов цитолиза в очаге В. для предотвращения избыточной вторичной альтерации.

Виды экссудатов: серозный, гнойный, геморрагический, фиброзный, смешанный экссудат

Экссудация (от лат. exsudatum – потеть, пропотевать) – процесс выхода плазмы и форменных элементов крови из сосудов микроциркуляторного русла в ткани и полости тела с образованием экссудата.

Экссудат – жидкость, образующаяся при воспалении и содержащая большое количество белка и форменные элементы крови (в основном лейкоциты).
В организме может образовываться также невоспалительная жидкость- транссудат. Он отличается от экссудата низким содержанием белка, лейкоцитов и других форменных элементов крови.
Причины экссудации
• Основная причина плазморрагии (пассивного выхода плазмы крови в интерстиций) – увеличение сосудистой проницаемости и повышение гидростатического давления крови в сосудах микроциркуляторного русла.
• Основная причина лейкоцитарной инфильтрации ткани – хемо- и электротаксис лейкоцитов.
Виды экссудата. Выделяют несколько видов экссудата: серозный, фибринозный, гнойный, гнилостный, геморрагический и катаральный. Вид экссудата определяет название формы острого экссудативного воспаления.
Значение экссудации. В очаге воспаления процесс экссудации имеет двоякое биологическое значение: адаптивное и патогенное.
• Адаптивное значение заключается в фиксации в очаге воспаления флогогена и создании оптимальных условий его инактивации и элиминации.
• Патогенное значение:
♦ сдавление и смещение органов и тканей экссудатом;
♦ возможно распространение воспалительного процесса в соседние ткани или биологические жидкости (в лимфу, кровь, ликвор и др.);
♦ образование очагов деструкции ткани при гнойном воспалении.

Читайте также:  Раковые больные с отеками

Эмиграция лейкоцитов
Эмиграция лейкоцитов – активный процесс их выхода из просвета сосудов микроциркуляторного русла в межклеточное пространство. Спустя 1-2 ч после воздействия на ткань флогогенного фактора в очаге воспаления обнаруживается большое число эмигрировавших нейтрофилов и других гранулоцитов, позднее – через 15-20 и более часов – моноцитов, а затем и лимфоцитов.

Процесс эмиграции последовательно проходит этапы роллинга (краевого стояния – «качения») лейкоцитов, их адгезии к эндотелию и проникновения через сосудистую стенку, а также – направленного движения лейкоцитов в очаге воспаления (рис. 5-1).

Функции лейкоцитов при воспалении

• Фагоцитоз.

• Синтез и выделение медиаторов воспаления.

• Презентация антигена лимфоцитам. Эта функция фагоцитов реализуется за счёт процессинга (поглощение и трансформация антигенных структур) и представления Аг клеткам иммунной системы (передача информации об Аг лимфоцитам).

Рис. 5-1. Этапы миграции лейкоцитов через сосудистую стенку (на примере нейтрофилов). [по 4].

Позднее значительная часть лейкоцитов, мигрировавших в очаг воспаления, подвергается дистрофическим изменениям и превращается в «гнойные тельца» или подвергается апоптозу. Часть лейкоцитов, выполнив свои функции, возвращается в сосудистое русло и циркулирует в крови.

При значительном повышении проницаемости стенок сосудов микроциркуляторного русла в очаг воспаления «пассивно» выходят также эритроциты и тромбоциты.

ФАГОЦИТОЗ
Фагоцитоз (греч. phagein – поедать, пожирать + греч. kytos – клетка + греч. osis – процесс, состояние) – активный биологический процесс, заключающийся в распознавании, поглощении и внутриклеточной деструкции чужеродного материала специализированными клетками – фагоцитами: микрофагами (полиморфноядерными лейкоцитами) и макрофагами.

В ходе фагоцитоза выделяют несколько основных стадий (рис. 5-2).

Рис. 5-2. Стадии фагоцитоза: 1 – адгезия частицы (например, бактерии) с помощью Fc-рецептора мембраны фагоцита; 2 – погружение адгезированной частицы в фагоцит и образование фагосомы; 3 – приближение и присоединение к фагосоме лизосом; 4 – слияние мембран фагосомы и лизосом с образованием фаголизосомы; 5 – разрушение поглощённой частицы. [по 4].

• Распознавание фагоцитом объекта поглощения и адгезия к нему происходит в несколько этапов:
♦ Обнаружение поверхностных детерминант объекта фагоцитоза.
♦ Опсонизация объекта фагоцитоза.
♦ Адгезия фагоцита к объекту фагоцитоза. Этот процесс реализуется с участием рецепторов лейкоцита FcyR (при наличии у объекта соответствующего лиганда) и молекул адгезии (при отсутствии лиганда, например, у неклеточных частиц).
• Поглощение объекта фагоцитом с последующим образованием фаголизосомы. Поглощенный материал погружается в клетку в составе фагосомы – пузырька, образованного плазматической мембраной. К фагосоме приближаются лизосомы, мембраны фагосомы и лизосом сливаются, и образуется фаголизосома.
• Внутриклеточное разрушение объекта фагоцитоза реализуется в результате активации двух сложных механизмов: кислородзависимой и кислороднезависимой цитотоксичности фагоцитов.
♦ Кислородзависимая цитотоксичность играет ведущую роль в деструкции объекта фагоцитоза. Она сопряжена со значительным повышением интенсивности метаболизма с участием кислорода (респираторный взрыв).
♦ Кислороднезависимые механизмы обусловлены действием лизосомальных ферментов фагоцита.

Незавершённый фагоцитоз. При незавершённом фагоцитозе поглощён- ные фагоцитами микроорганизмы не разрушаются. Это способствует персистенции и распространению инфекции в организме. Причины незавершённого фагоцитоза:
• Мембрано- и ферментопатии лизосом фагоцита.
• Повышенная резистентность микробов к ферментам фагоцита.
• Способность некоторых микробов быстро покидать фагосомы и персистировать в цитоплазме фагоцита (риккетсии, хламидии).
• Недостаточный эффект гормонов – регуляторов процесса фагоцитоза.

ПРОЛИФЕРАЦИЯ

Пролиферация – важный компонент механизма развития воспалительного процесса и завершающая его стадия – характеризуется увеличением числа стромальных и паренхиматозных клеток, а также образованием межклеточного вещества в очаге воспаления. Эти процессы направлены на регенерацию или замещение разрушенных тканевых элементов.

♦ При благоприятном течении воспаления наблюдается полная регенерация ткани – восполнение её погибших и восстановление обратимо повреждённых структурных элементов (реституция).

♦ При значительном разрушении участка ткани или органа на месте дефекта паренхиматозных клеток образуется вначале грануляционная ткань, а по мере её созревания – рубец, т.е. наблюдается неполная регенерация.

Неспецифическое и специфическое воспаление

Неспецифическое воспаление не имеет специфических черт и может вызываться различными флогогенными агентами. Специфическое воспаление имеет, наряду с общими, специфические черты и вызывается определённым возбудителем. Выделяют несколько специфических воспалительных заболеваний: туберкулёз, сифилис, лепра, склерома и др.

Виды экссудатов

В зависимости от причин, вызывающих воспаление, и особенностей развития воспалительного процесса различают следующие виды экссудатов:
серозный,
фибринозный,
гнойный,
геморрагический.

Соответственно наблюдается серозное, фибринозное, гнойное и геморрагическое воспаление. Встречаются и комбинированные виды воспаления: серо-фибринозное, фибринозно-гнойное, гнойно-геморрагическое. Любой экссудат после его заражения гнилостными микробами называется гнилостным. Поэтому выделение такого экссудата в самостоятельную рубрику вряд ли целесообразно. Экссудаты, содержащие большое количество жировых капелек (хилус), называются хилезными, или хилоидными. Следует заметить, что поступление жировых капелек возможно в экссудат любого указанного выше типа. Оно может быть вызвано локализацией воспалительного процесса в местах скопления крупных лимфатических сосудов в брюшной полости и другими побочными влияниями. Поэтому выделять хилезный тип экссудата как самостоятельный также вряд ли целесообразно. Примером серозного экссудата при воспалении является содержимое пузыря от ожога на коже (ожог II степени).

Примером фибринозного экссудата или воспаления служат фибринозные налеты в зеве или гортани при дифтерии. Фибринозный экссудат образуется в толстом кишечнике при дизентерии, в альвеолах легких при крупозном воспалении.

Фибринозный экссудат. Особенностью химического состава фибринозного экссудата является выход фибриногена и выпадение его в виде фибрина в воспаленной ткани. В дальнейшем выпавший фибрин растворяется за счет активации фибринолитических процессов. Источниками фибринолизина (плазмина) служат как плазма крови, так и сама воспаленная ткань. Увеличение фибринолитической активности плазмы крови в период фибринолизиса при крупозной пневмонии, например, легко видеть, определяя эту активность в экссудате искусственного волдыря, созданного на коже больного. Таким образом, процесс развития фибринозного экссудата в легком как бы отражается в любом другом месте организма больного, где возникает в той или иной форме воспалительный процесс.

Геморрагический экссудат образуется при бурно развивающемся воспалении с выраженным повреждением сосудистой стенки, когда в воспаленную ткань выходят эритроциты. Геморрагический экссудат наблюдается в оспенных пустулах при так называемой черной оспе. Он возникает при сибиреязвенном карбункуле, при аллергических воспалениях (феномен Артюса) и других остро развивающихся и бурно протекающих воспалительных процессах.

Гнойный экссудат и гнойное воспаление вызываются гноеродными микробами (

Источник