Механизм франка старлинга в патогенезе сердечных отеков

Механизм франка старлинга в патогенезе сердечных отеков thumbnail

Зако́н Фра́нка — Ста́рлинга (также известный как механизм Франка — Старлинга и как закон сердца Старлинга) представляет собой взаимосвязь между конечным диастолическим объёмом и ударным объёмом.[B: 1][B: 2][B: 3][B: 4]

Эксперименты на денервированных сердцах показали, что миокард способен к изменениям в гемодинамике приспосабливаться с помощью собственных внутрисердечных механизмов. Таких механизмов известно два: 1) ритмо-инотропная зависимость (зависимость силы сокращения от частоты сокращения) и 2) механизм Франка — Старлинга.[1]

Физиология[править | править код]

Физиологическая основа[править | править код]

Объём полостей сердца изменяется пропорционально длине мышечных волокон их стенок, возведённой в третью степень; давление в такой полости обратно пропорционально её радиусу.[2]

Было замечено, что увеличение объёма желудочка обусловлено увеличением длины каждого кардиомиоцита, образующего камеры сердца. На основании этого наблюдения был сделан вывод, что увеличение длины мышечных волокон влияет на работы сердца за счёт изменения количества взаимодействующих перекрещивающихся миофиламентов. Однако ещё более поздние исследования привели к гипотезе, что в основе лежит изменение чувствительности миофиламентов к ионам кальция в связи с растяжением мышечной клетки.[1]

Вместе с тем, чрезмерно высокие значения наполняющего давления, когда мышечные волокна растягиваются слишком, приводят скорее к снижению насосной мощности желудочков, а не к её росту.[1]

Известно,[B: 5] что наибольшее изометрическое активное напряжение развивается, когда мышца имеет оптимальную длину. Однако длина расслабленных кардиомиоцитов в покоящемся желудочке меньше, чем оптимальная длина для сокращения, потому что в сердце (любого животного) нет костей для фиксации длины саркомера, поэтому длина саркомера очень изменчива и напрямую зависит от наполнения кровью и, следовательно, расширения камер сердца. В человеческом сердце максимальная сила генерируется при начальной длине саркомера в 2,2 мкм, и если начальная длина больше или меньше этого оптимального значения, то сила, развиваемая при сокращении мышцы, окажется меньше максимально возможной.

Физиологическое значение[править | править код]

Главный вывод из этих экспериментов Старлинга заключается в том, что изолированное сердце при постоянной частоте сердечных сокращений (ЧСС) способно самостоятельно, посредством саморегуляции, приспосабливать свою деятельность к возрастающей нагрузке объёмом, отвечая на неё увеличенным выбросом.[2]
Иными словами, главным следствием закона Франка — Старлинга является то, что при увеличении венозного давления при неизменном артериальном возрастает сила сердечных сокращений и увеличиваются СО и МОК.[3]

Аналогичный механизм саморегуляции миокарда действует и при увеличении нагрузки давлением, однако в отличие от увеличения нагрузки объёмом в данном случае большее растяжение волокон приводит к более мощному сокращению.[2]
Это явление именуется эффектом Анрепа[4], по имени исследователя, описавшего его в 1912 году.[A: 1]
Иными словами, другим основным следствием закона сердца Старлинга является то, что при увеличении артериального давления и неизменном венозном давлении возрастает сила сердечных сокращений для преодоления возросшего сопротивления (т. е. чем больше противонагрузка, тем больше сила сокращений), но СО и МОК не меняются.[3]

Изменение объёма желудочков позволяет сердцу также приспосабливаться к изменениям частоты ЧСС. Например, при брадикардии увеличенная продолжительность диастолы создаёт возможность для большего наполнения желудочков. Последующее увеличение длины кардиомиоцитов приводит к увеличению систолического объёма. Таким образом, уменьшение ЧСС может оказаться полностью скомпенсированным за счёт увеличения систолического объёма, и результирующий сердечный выброс останется неизменным.[1]

За счёт одного только механизма Франка — Старлинга МОК может быть увеличен до 10—13 л/мин.[4]

В ходе последующих исследований было выявлено, что кардиодинамика иннервированного сердца in situ существенно отличается от той, которая наблюдается в эксперименте Старлинга; во всяком случае в здоровом сердце во время физической нагрузки роль механизма Франка — Старлинга существенно снижается и на первое место выступают управляющие воздействия симпатической нервной системы: сократимость миокарда возрастает независимо от исходного растяжения (положительный инотропный эффект). Таким образом, перестройка деятельности желудочков под влиянием со стороны симпатической нервной системы позволяет при одном и том же диастолическом объёме либо выбрасывать кровь против повышенного давления, либо увеличивать ударный объём без увеличения конечнодиастолического объёма.[2]

Существуют утверждения,[4] что действие механизма Франка — Старлинга существенно модифицируется также и на уровне локальных интракардиальных (кардиально-кардиальных) рефлексов, замыкающихся в интрамуральных ганглиях сердца. Примером такого рефлекса может быть следующий: при увеличении притока крови к правому предсердию усиливается сокращение левого желудочка, как бы заранее адаптивно освобождая место для крови, которая вскоре начнёт поступать в большем объёме в левый отдел сердца после прохождения малого круга кровообращения. Однако этот эффект наблюдается только на фоне низкого исходного наполнения сердца и сравнительно низкого давления в устье аорты и в коронарных сосудах. В том же случае, когда камеры сердца, аорта и коронарные сосуды переполнены кровью, дополнительное растяжение предсердий, наоборот, приведёт к угнетению сократимости желудочков, — тем самым уменьшая сердечный выброс и как бы отменяя закон Франка — Старлинга.

Читайте также:  Отек горла при тонзиллите

Таким образом, физиологическое значение механизма Франка — Старлинга в условиях сердца in situ состоит скорее в координации выброса обоих желудочков: поскольку желудочки сокращаются с одинаковой частотой, их выбросы могут согласовываться друг с другом только путём взаимного приспособления ударных объёмов.[A: 2][2] Саморегуляторные механизмы миокарда включаются также при перемене положения тела, сопровождающегося изменением венозного возврата.[2]

Исторические сведения[править | править код]

Этот внутрисердечный механизм регуляции деятельности миокарда обнаружили примерно сто лет назад независимо О. Франк[en] и Э. Старлинг — немецкий и английский учёный, соответственно.[1]

Препарат сердца млекопитающего, предложенный Э. Старлингом, позволяет в широких пределах изменять давление в аорте и венозный возврат, — что даёт возможность сопоставлять эти параметры с конечно-диастолическим размером желудочков. Поскольку температура крови поддерживается в ходе эксперимента на постоянном уровне, а сердечные нервы пересечены, ритм сердца не меняется. В ходе эксперимента нагрузка объёмом создаётся путём повышенного диастолического наполнения желудочка, а нагрузка давлением создаётся при помощи повышения периферического сопротивления. Построенные в ходе эксперимента графики зависимости давления в желудочке от объёма желудочка демонстрирует адаптацию миокарда к кратковременным нагрузкам объёмом и давлением при помощи механизма Франка — Старлинга.[2]

Однако существует также мнение,[A: 3] что ни Франк, ни Старлинг не были первыми, кто описал взаимосвязь между конечным диастолическим объёмом и регуляцией сердечного выброса. Первая формулировка закона была теоретизирована итальянским физиологом Д. Маэстрини[en], который 13 декабря 1914 года начал первый из 19 экспериментов, которые привели его к формулировке «закона сердца» (ориг. итал. legge del cuore).

Вклад Отто Франка состоит в его экспериментах 1895 года на сердцах лягушек. С целью поиска связи между работой сердца и скелетных мышц, Франк занимался наблюдениями изменений в диастолическом давлении с различными объёмами желудочка лягушки, а свои наблюдения он представил в виде диаграммы давление—объём.[A: 3]

Старлинг экспериментировал на интактных сердцах млекопитающих, таких как собаки, чтобы выяснить, почему изменения артериального давления, частоты сердечных сокращений и температуры не влияют на относительно постоянный сердечный выброс.[A: 3] Более чем за 30 лет до разработки модели мышечного сокращения как скольжения миофибрилл и до понимания взаимосвязи между активным напряжением и длиной саркомера, Старлинг в 1914 году высказал предположение, что «механическая энергия, высвобождаемая при переходе от покоя к активному состоянию, является функция длины волокна».

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 3 4 5 Камкин, 2004, § 46.2. Регуляция деятельности сердечной мышцы, с. 580—590.
  2. 1 2 3 4 5 6 7 Шмидт, 2005, § 19.5. Приспособление сердечной деятельности к различным нагрузкам, с. 485—492.
  3. 1 2 Судаков, 2000, Регуляция сердечной деятельности, с. 327—334.
  4. 1 2 3 Филимонов, 2002, § 11.3.3. Регуляция функций сердца, с. 453—463.

Литература[править | править код]

Книги[править | править код]

  1. ↑ Физиология. Основы и функциональные системы / под ред. К. В. Судакова. — М.: Медицина, 2000. — 784 с. — ISBN 5-225-04548-0.
  2. Филимонов В. И. Руководство по общей и клинической физиологии (рус.). — М.: Медицинское информационное агентство, 2002. — 958 с. — 3000 экз. — ISBN 5-89481-058-2.
  3. ↑ Фундаментальная и клиническая физиология (рус.) / под ред. А. Камкина, А. Каменского. — М.: Academia, 2004. — 1072 с. — ISBN 5-7695-1675-5.
  4. ↑ Том 2. // Физиология человека: В 3-х томах (рус.) / Пер. с англ. / Под ред. Р. Шмидта, Г. Тевса. — 3-е изд.. — М.: Мир, 2005. — 314 с. — ISBN 5-03-003576-1.
  5. ↑ Vander’s Human Physiology: The Mechanisms of Body Function (англ.) / Widmaier, E. P., Hershel, R., & Strang, K. T.. — 14th ed.. — NY: McGraw-Hill Education, 2016. — ISBN 978-1-259-29409-9.
Читайте также:  Отек легких кошка рентген

Статьи[править | править код]

Ссылки[править | править код]

Источник

Согласно классической теории Э. Старлинга (1896), нарушение обмена воды между капиллярами и тканями определяется следующими факторами: 1) гидростатическим давлением крови в капиллярах и давлением межтканевой жидкости; 2) коллоидноосмотическим давлением плазмы крови и тканевой жидкости; 3) проницаемостью капиллярной стенки.

Кровь движется в капиллярах с определенной скоростью и под определенным давлением (рис. 12-45), в результате чего создаются гидростатические силы, стремящиеся вывести воду из капилляров в интерстициальное пространство. Эффект гидростатических сил будет тем больше, чем выше кровяное давление и чем меньше величина давления тканевой жидкости. Гидростатическое давление крови в артериальном конце капилляра кожи человека составляет 30-32 мм рт.ст., а в венозном конце – 8-10 мм рт.ст.

Установлено, что давление тканевой жидкости является величиной отрицательной. Она на 6-7 мм рт.ст. ниже величины атмосферного давления и, следовательно, обладая присасывающим эффектом действия, способствует переходу воды из сосудов в межтканевое пространство.

Таким образом, в артериальном конце капилляров создается эффективное гидростатическое давление(ЭГД) – разность между гидростатическим давлением крови и гидростатическим давлением межклеточной жидкости, равное ~ 36 мм рт.ст. (30 – (-6)). В венозном конце капилляра величина ЭГД соответствует 14 мм рт.ст.

(8 – (-6)).

Удерживают воду в сосудах белки, концентрация которых в плазме крови (60-80 г/л) создает коллоидно-осмотическое давление, равное 25-28 мм рт.ст. Определенное количество белков содержится в межтканевых жидкостях. Коллоидно-осмотическое

Обмен жидкости между различными частями капилляра и тканью (по Э. Старлингу): pa – нормальный перепад гидростатического давления между артериальным (30 мм рт.ст.) и венозным (8 мм рт.ст.) концом капилляра; bc – нормальная величина онкотического давления крови (28 мм рт.ст.). Влево от точки A (участок Ab) происходит выход жидкости из капилляра в окружающие ткани, вправо от точки А (участок Ac) происходит ток жидкости из ткани в капилляр (А1 – точка равновесия). При повышении гидростатического давления (p’a’) или снижении онкотического давления (b’c’) точка A смещается в положение А1 и А2. В этих случаях переход жидкости из ткани в капилляр затрудняется и возникает отек

давление интерстициальной жидкости для большинства тканей составляет ~ 5 мм рт.ст. Белки плазмы крови удерживают воду в сосудах, белки тканевой жидкости – в тканях. Эффективная онкотическая всасывающая сила(ЭОВС) – разность между величиной коллоидно-осмотического давления крови и межтканевой жидкости. Она составляет ~ 23 мм рт. ст. (28-5). Если эта сила превышает величину эффективного гидростатического давления, то жидкость будет перемещаться из интерстициального пространства в сосуды. Если ЭОВС меньше ЭГД, обеспечивается процесс ультрафильтрации жидкости из сосуда в ткань. При выравнивании величин ЭОВС и ЭГД возникает точка равновесия А (см. рис. 12-45).

В артериальном конце капилляров (ЭГД = 36 мм рт.ст., а ЭОВС = 23 мм рт.ст.) сила фильтрации преобладает над эффективной онкотической всасывающей силой на 13 мм рт.ст. (36-23). В точке равновесия А эти силы выравниваются и составляют 23 мм рт.ст. В венозном конце капилляра ЭОВС превосходит эффективное гидростатическое давление на 9 мм рт.ст. (14 – 23 = -9), что определяет переход жидкости из межклеточного пространства в сосуд.

По Э. Старлингу, имеет место равновесие: количество жидкости, покидающей сосуд в артериальной части капилляра, должно быть равно количеству жидкости, возвращающейся в сосуд в венозном конце капилляра. Как показывают расчеты, такого равновесия не происходит: сила фильтрации в артериальном конце капилляра равна 13 мм рт.ст., а всасывающая сила в венозном конце капилляра -9 мм рт.ст. Это должно приводить к тому, что в каждую единицу времени через артериальную часть капилляра в окружающие ткани жидкости выходит больше, чем возвращается обратно. Так оно и происходит – за сутки из кровяного русла в межклеточное пространство переходит около 20 л жидкости, а обратно через сосудистую стенку возвращается только 17 л. Три литра транспортируется в общий кровоток через лимфатическую систему. Это довольно существенный механизм возврата жидкости в кровяное русло, при повреждении которого могут возникать так называемые лимфатические отеки.

Читайте также:  После филлера отек и болят



Источник

Закон Франка-Старлинга

Закон Франка-Старлинга описывает механизм, который способствует поддержанию ударного объема при остром поражении миокарда и может также играть компенсаторную роль при ХСН, хотя последнее маловероятно. Нейрогуморальная активация (внешний механизм) и закон Франка-Старлинга – адаптивные явления, включающиеся в течение нескольких минут после повреждения миокарда. Поражение кардиомиоцитов приводит к резкому снижению объема крови, выбрасываемого ЛЖ (ударный объем), и последующему увеличению его КДО (и давления). 

С помощью механизма Франка-Старлинга чрезмерное растяжение полости ЛЖ повышает силу сокращения кардиомиоцитов, помогая таким образом восстановить ударный объем. Этот механизм также называют законом гетерометрической ауторегуляции. В хронической ситуации задержка натрия, жидкости и сужение вен представляют собой последовательные попытки организма использовать механизм Франка-Старлинга путем увеличения наполнения ЛЖ вследствие возрастания преднагрузки. 

Такие адаптивные процессы, однако, могут привести к повышению давления в системе ЛА, что способствует возникновению одышки у больных с СН. Ригидность стенок артерий большого круга кровообращения (сужение резистивных сосудов), возникающая в результате задержки натрия и жидкости, усиливает постнагрузку на ЛЖ, что способствует прогрессированию его недостаточности (закон гомеометрической регуляции). 

Ремоделирование желудочков

Сердце пытается компенсировать увеличение преднагрузки (возникшей вследствие увеличенного объема внеклеточной жидкости и венозного притока) и постнагрузки (вследствие системного сужения артериол) различными способами. Один из них состоит в развитии гипертрофии желудочка с целью удержания систолического напряжения стенки в нормальных пределах. 

Длительная перегрузка давлением, как правило, приводит к концентрической гипертрофии миокарда, тогда как перегрузка объемом обычно приводит к дилатации желудочка. Обе формы ремоделирования различаются на молекулярном уровне. Перегрузка давлением ассоциируется с параллельной репликацией миофибрилл и утолщением отдельных миоцитов. Перегрузка объемом приводит к последовательной репликации саркомеров и удлинению миоцитов. Разные типы гемодинамической перегрузки активируют различные сигнальные пути. 

Результатом ремоделирования миокарда становится относительно незначительное изменение размеров, формы, функций и толщины стенок желудочка. Однако такая компенсаторная адаптация способна, по-видимому, поддерживать насосную функцию на должном уровне в течение ограниченного времени, а при продолжительном воздействии повышенной нагрузки развивается ХСН. Дилатация желудочка может привести к растяжению кольца МК и вызвать его недостаточность (рис. 1), что дополнительно увеличивает нагрузку на ЛЖ; это пример другого “порочного круга”, ведущего к прогрессированию СН. 

Цветовое допплеровское исследование больного с регургитацией на МК, развившейся в результате дилатации ЛЖ; апикальная четырехкамерная позиция.

Рис. 1. Цветовое допплеровское исследование больного с регургитацией на МК, развившейся в результате дилатации ЛЖ; апикальная четырехкамерная позиция.

Первоначальное увеличение длины саркомеров, вызванное напряжением миокардиоцита, обеспечивает оптимальное перекрытие между миофиламентами. Результатом продолжающейся гемодинамической перегрузки становится снижение сократимости миокарда. У пациентов с легкой формой заболевания это проявляется уменьшением скорости сокращения миокарда или уменьшением силы изометрического сокращения. На более поздних стадиях изометрическое усилие снижается прогрессивно, уменьшаются ФВ и минутный объем сердца, что сопровождается снижением толерантности к физической нагрузке. 

Мы можем лишь кратко остановиться на молекулярных механизмах, стоящих за этими изменениями, поскольку их понимание по-прежнему ограничено. Это потеря миоцитов за счет некроза и апоптоза, нарушение отношений “возбуждение-сокращение”, изменения в составе внеклеточного матрикса. Потеря миоцитов в результате некроза – процесс, который происходит при ИМ, дилатационной кардиомиопатии или миокардите, в последних случаях он носит диффузный характер. Апоптоз, или запрограммированная смерть клетки, возникает в результате запуска генетической программы, ведущей к деградации ядерной ДНК. 

В недавних исследованиях в миокарде больных с СН описаны апоптические клетки. Некоторые вещества, такие как ангиотензин II, активные формы кислорода, оксид азота (NO) и провоспалительные цитокины, могут в эксперименте вызывать апоптоз кардиомиоцитов. Однако его роль при ХСН достоверно неизвестна. Изменения внеклеточного матрикса проявляются увеличением содержания коллагена. Наряду с этим может быть повышена его деградация, а также синтез и активность ферментов, контролирующих эти процессы. Изменение содержания коллагена может способствовать нарушению систолического сокращения, но еще большее значение оно имеет для уменьшения эластичности желудочка и нарушения его наполнения.

John McMurray, Mark Petrie, Karl Swedberg, Michel Komajda, Stefan Anker и Roy Gardner

Сердечная недостаточность

Опубликовал Константин Моканов

Источник